

Page 1

 WHITE PAPER

Maximizing Reuse in Safety-Critical
Software using IOI

Overview

Developing DO-178 certifiable avionics software is a very expensive and time consuming
proposition. It is not reasonable that a company develop software from scratch for every
new product they develop. In order to stay competitive in this market space they need to
find a way to reuse as much code as they can from system to system. Ideally, being able to
reuse software at the binary level would be ideal. Reuse of software is not a new concept
but in the avionics market it is can provide even more value, especially if it does not change
from product to product. Minimizing change is the key to driving the cost saving to a
maximum.

One of the main reasons for changing the software in avionics systems is that the I/O is
volatile and changes frequently. Even in a simple upgrade situation, the I/O interface in a
given avionics software application can differ significantly from the interface in the prior
configuration. Managing this I/O volatility and the resulting software change impacts
presents significant challenges to avionics developers and their software teams.

Deos™ is designed to enhance and enable application software portability, where binary
reuse is the ultimate form of portability. Deos was originally developed for use in the
aerospace industry where verification and certification costs are notoriously high. The
ability to reuse executables and shared libraries without modification on new (compatible)
target systems does significantly reduce costs. This binary reuse model is enabled by
several capabilities including DDC-I’s IO Interface (IOI) library, used in conjunction with its
Deos™ Real Time Operating System (RTOS) is designed to help developers meet these
challenges in a way that minimizes change impact and maximizing software reuse, while
keeping cost and schedule under control.

This paper will focus on the reuse challenges of I/O and how DDC-I’s IOI product provides a
solution to meet these challenges.

Page 2

I/O Challenges

Aircraft avionics is an I/O centric environment. There are many types of systems that are
dependent on sensors all over the aircraft to provide data of various different types,
formats and rates on various different busses. All of this I/O tends to change frequently.
Aircraft to aircraft, platform to platform, I/O is almost always different. For example, the
sources and destinations of data values can change. Further, engineering units, data types
and data rates can change.

In any avionics software system, managing this volatility presents significant challenges to
software developers. Specifically, how can one isolate their software from this volatility
thereby minimizing change impact and maximizing software reuse, while also keeping cost
and schedule under control? In the world of certifiable, safety-critical software, these
considerations become even more important when one considers the impact of changes
not only on the software, but also on the certification activities and artifacts, including
rework of testing, reviews and analysis.

Figure 1 shows a very simple example of I/O, say on Target 1.

Figure 1 – I/O on Target 1

As shown, Target 1 has two input values, inputVal1 and inputVal2. Orange represents one
combination of engineering units, data type and data rate for inputVal1, and green
represents a second combination for inputVal2. These two values are sent from other
systems in the aircraft (sensor, data concentrator, etc.) to Target 1 via ARINC 429 and an
analog-to-digital converter, respectively.

Page 3

Similarly, Target 1 has two output values, outputVal1 and outputVal2, where purple
represents a third combination of engineering units, data type and data rate for outputVal1,
and yellow represents a forth combination for outputVal2. These two values exit Target 1
via a digital-to-analog converter and RS-232, respectively.

The avionics application software application (grey) converts these inputs into these
outputs. For example, it may be part of a flight control system that uses altitude and
vertical airspeed inputs to compute outputs that help maintain an altitude hold flight mode.

Now, assume that the aircraft manufacturer upgrades the aircraft on which the Target 1
application software is deployed. This is often the case when upgrading an aircraft but it
can also happens many times before the software gets deployed for the first time. Let’s also
assume that part of the upgrade involves changing I/O hardware due to improvements in
devices, device availability, etc. Finally, assume that the upgraded aircraft requires the
same functionality present in Target 1.

These changes result in Target 2, as shown in Figure 2.

Figure 2 – I/O on Target 2

Target 2 intends to use the same application software and has the same two inputs. But
here, inputVal1 is in purple and inputVal2 is in brown (not orange and green, as in Target
1) as before, this means that although the same data is being provided to the application it

Page 4

is being provided differently (engineering units, data types and data rate). Further, these
two values enter Target 2 via RS-232 and ARINC 429 (not 429 and A-2-D, as in Target 1).

Similarly, Target 2 has the same two outputs. But here, outputVal1 is in blue and
outputVal2 is in red (not purple and yellow, as in Target 1). These two values exit Target 2
via an ARINC 664 bus.

Again, the avionics application software (grey) is expected to convert these inputs into
these outputs. However, the sources of the inputs differ from Target 1, as does the
destination of the outputs. Further, each value’s characteristics differ from Target 1 (e.g.,
engineering units, data type and data rate).

The question is, can the application software remain unaltered in Target 2, while still
performing the same function it performed in Target 1, even though its I/O is completely
different?

Data Communication via IOI

DDC-I’s IOI product is a software library that provides I/O services to software applications
that handles/supports:

• Periodic and Aperiodic data rates
• Data producers and data consumers that run at different rates and manages the

required buffering
• The ability for data consumers to access pieces of data within a data structure,

without knowledge of the entire structure.
• Sampling, queuing and blackboard behaviors (ARINC 653 API uses IOI for inter-

partition communication capabilities)
o FIFO or last produced
o Re-read messages
o Check message freshness

• Fixed and variable length messages
• Combined or “chained” reads and writes

o Chaining refers to IOI’s ability to read or write multiple data values via a
single call from user software, even if those values come from, or go to,
multiple sources or destinations.

• The ability to inject user-defined formatting functions into the data stream.
o Formatting functions are primarily used to modify data types, perform

engineering unit conversions, and so on.

These properties and more are configured via XML-based IOI configuration files that define
each produced and consumed data item and its detailed characteristics. Such as:

• Name of data item (for reference)
• Data type
• Data rate (produced or consumed)

Page 5

• Buffering and queue depth definition
• Process/partition that produces the data item
• Process/partition that consumes the data item
• Formatting functions for data item and weather it is used when produced or

consumed.

I/O Examples

This section of the document will be used to illustrate the use cases for IOI and to further
explain the capabilities of IOI and how it can be utilized to enable reuse in your
applications.

I/O Example – Baseline Configuration

To illustrate IOI data storage and formatting capability, consider the data value airspeed.

Example 1, Step 1 - Data Formatted on Write

In Step 1, an application in partition P1 writes airspeed, as shown in Figure 3.

Figure 3 – Data formatted on write

Page 6

In Step 1a, P1 calls ioiWrite() to write airspeed. Green color-coding is used to show that
airspeed, as produced by P1, is in a given engineering unit. For this example, assume that
green represents miles-per-hour.

In Step 1b, based on instructions in the IOI registry, IOI invokes mph2kph(), a user-defined
formatting function that converts miles-per-hour to kilometers-per-hour, represented here
by green transitioning to orange.

In Step 1c, IOI stores airspeed formatted in kilometers-per-hour, represented here by
orange, in a block of RAM that it controls.

Recall that many I/O-related properties are configured via the XML-based registry files (i.e.,
IOI Registry). For example, those properties specify that airspeed is produced by partition
P1 in miles-per-hour and that IOI should use the mph2kph() formatting function before
storing airspeed in RAM.

Example 1, Step 2 - Data Read as Stored in Memory

Next, in Step 2, partition P2 reads airspeed, as shown in Figure 4.

Figure 4 – Data Read as Stored in Memory

Page 7

In Step 2a, P2 calls ioiRead() to read airspeed. Here, assume that P2 wants airspeed in
kilometers-per-hour (again, represented by orange as in Step 1).

In Step 2b, IOI fetches airspeed from the RAM that it controls. Since airspeed is already
stored in kilometers-per-hour, no formatting function is required and the value is passed
directly to P2.

In this case, the IOI Registry specifies that P2 expects to consume the airspeed value
produced by partition P11

Example 1, Step 3 – Data Formatted on Read

, and wants the value in kilometers-per-hour (which is how
airspeed is already stored in RAM).

Finally, in Step 3, partition P3 reads airspeed, as shown in Figure 5.

Figure 5 – Data Formatted on Read

In Step 3a, P3 calls ioiRead() to read airspeed. Here, assume that P3 wants airspeed in
mach (represented by blue).

1 Other partitions could produce an airspeed value. Therefore each consumer of a value must specify the
intended producer of that value. However, recall that this property is configured in the XML-based registry.

Page 8

In Step 3b, IOI fetches airspeed from its RAM (stored in kilometers-per-hour), then invokes
kph2mach(), a user-defined formatting function that converts kilometers-per-hour to mach.

In Step 3c, the data is formatted and IOI returns airspeed to P3 in mach.

In this case, the IOI Registry specifies that P3 expects to consume the airspeed value
produced by partition P1. It also specifies that P3 wants airspeed in mach and that IOI
should use the kph2mach() formatting function before returning airspeed to P3.

I/O Example 2 – Re-Configuring for Reuse

Recall the original configuration (from Figure 3), where P1 writes airspeed in miles-per-
hour (green) and the IOI converts it to kilometers-per-hour (orange) before storing it in
RAM. Then, when P2 reads airspeed, expecting it in kilometers-per-hour, the IOI simply
returns the value stored in RAM.

Now, consider what happens to P2 from Example 1 if/when the target system within which
it operates changes and its I/O changes along with it. This scenario is shown in Figure 6.

Figure 6 – Example 2, P2’s I/O Reconfigured for Reuse

Page 9

Here, notice that airspeed is produced by an application in P4, not P1, as in Example 1.
Further, it’s now produced in mach (blue) not miles-per-hour. Also, notice that the IOI
saves airspeed to RAM in mach, with no formatting function applied at the time airspeed is
written by P4.

Next, the application in P2 reads airspeed, and based on the IOI registry file, IOI knows that
P2 wants airspeed in kilometers-per-hour. To accomplish this, the IOI invokes the
mach2kph() formatting function, which converts mach to kilometers-per-hour, and return
airspeed as expected by P2.2

Now, the question is, can the P2 software remain unchanged in this new target
configuration, while performing the same function it performed in the old configuration,
even though its I/O is now completely different?

3

Recall that the answer to this question has particular importance for avionics software. If
P2 is modified to adapt it to the new I/O environment, then not only has the software been
modified, requirements and design may change too. Further, significant rework likely will
be required on the previously completed verification activities (i.e., tests, reviews and
analysis). Such rework can be very costly in terms of budget and schedule. Therefore, the
goal is to minimize change to P2 thereby minimizing rework, while ensuring that P2 will
safely perform its intended function in the new environment.

4

At a high level, Figure 6 illustrates how to achieve this goal. Specifically, one simply
reconfigures the IOI Registry used in Example 1 as follows:

• The registry is modified to indicate that airspeed is now produced by P4 in mach,
rather than P1 in miles-per-hour (as before).

• The registry is modified to indicate that P2 now consumes airspeed from P4, rather
than P1 (as before).

• The registry is modified to indicate that IOI should invoke the mach2kph(),
formatting function that converts mach to kilometers-per-hour when P2 reads
airspeed, rather than when airspeed is written (as before)

Note that the IOI Registry still indicates that P2 expects airspeed in kilometers-per-hour (as
before), which is essential to isolating P2 from the changes in its I/O.

2 Formatting functions can be associated with the writing of a value (e.g., airspeed in Example 1), with the
reading of a value (e.g., airspeed in Example 2), or with both. Where formatting functions are used is a
design-time decision.

3 P2 may also consume hundreds of values, other than airspeed, and many may change.

4 The same is true of the IOI library itself. Specifically, one does not want to change it either even though it’s
operating in a completely new I/O environment.

Page 10

I/O Example 3 – Data Chaining and Formatting

Many values that are required to be passed to avionics equipment are a combination of
sensor inputs that are used to calculate the required data. While the application can
receive the individual values, format and calculate the value needed, this can limit the
reusability of this application. In this example we will use IOI to read multiple values,
correctly format them and then calculate the desired value, thus keeping the end
application reusable if the format of the data changes in the future.

Figure 7 – Example 3, Data Chaining and Formatting

In Step 1a, P1 calls ioiWrite() to write airspeed. Green color-coding is used to show that
airspeed, as produced by P1, is in a given engineering unit. As before, assume that green
represents miles-per-hour. Notice that the IOI saves airspeed to RAM in miles-per-hour,
with no formatting function applied at the time airspeed is written by P1.

In Step 1b, P5 calls ioiWrite() to write windspeed. Purple color-coding is used to show that
windspeed, as produced by P5, is in knots. Notice that the IOI saves windspeed to RAM in
knots, with no formatting function applied at the time windspeed is written by P5.

In Step 1c, based on instructions in the IOI registry, IOI saves the values of airspeed and
windspeed in its defined shared memory regions.

Page 11

In Step 2a, P3 calls ioiRead() to read groundspeed. Orange color-coding is used to show
that groundspeed, as required by P3, is in kilometers-per-hour.

In Step 2b, based on instructions in the IOI registry, IOI knows that groundspeed is a
calculation of airspeed and windspeed and that P3 wants groundspeed in kilometers-per-
hour. To accomplish this, the IOI reads airspeed and windspeed from memory.

In Step 2c, IOI invokes the mph2kph() formatting function, on the airspeed value and
invokes knts2kph() on the windspeed value. Next, the IOI invokes the calculation GS() and
returns groundspeed in kilometers-per-hour to P3.

It is easy to see how this could be expanded to handle many different scenarios that arise in
avionics development.

I/O Example 4 – Abstract Data Referencing

For the previous examples we have been using single values produced by applications and
stored in memory. In reality there are many situations where large amounts of data are
sent between partitions via data structures. Although this makes it easy for applications to
share data, it creates some significant problems when trying to create reusable
applications.

• Both applications must understand the exact layout of the structure to get access to
individual elements.

• Changes required if elements change position
• Changes required if elements are added
• Changes required if elements are removed

IOI provides a way to use the structures to store large amounts of data and still provide a
way for applications to access all or individual elements without detail knowledge of the
structure format.

Page 12

Figure 8 – Example 4, Abstract Data Referencing

In Step 1, P1 calls ioiWrite() to write the entire data structure represented by FADEC1[5].
In this example there are 5 values where in real systems this could be 100’s of values. Just
like in previous examples each of the values of this structure could have different
engineering units and could also be formatted on read or write as well.

In Step 2, P3 calls ioiRead() to read FADEC1-voltage. In this way the individual elements of
FADEC1 are accessed by name and returned to P3.

In figure 8, we also show more detail about the contents of the IOI registry configuration
file. The file shows that the FADEC1 data is produced as a structure, but is can be consumed
all at once (FADEC1-All) or by each individual element. By adding this abstraction detail in
the IOI configuration file, P3 is not required to have knowledge of the structure that is
providing the data.

Page 13

I/O Example 5 – Re-Configuring for Verification Testing

Now, consider what happens to partition P2 from Example 1 (or Example 2) during
verification testing. Actual target hardware is often very expensive and hard to get time on
for software verification testing. Consequently, in order to keep schedules in check, one
must conduct much of that testing on a reference platform test environment that is
“sufficiently similar” to the target environment.5

Just like the reuse scenario in Example 2, if P2 must change when moving from the test
environment to the target environment (e.g., changes due to differences in I/O), then
significant retesting likely will be required on the target. Such rework can be very costly in
terms of budget and schedule. Remember, the goal is to minimize change to P2 thereby
minimizing retesting, while ensuring that P2 will safely perform its intended function in the
target environment.

Figure 9 – Example 5, P2’s I/O Reconfigured for Verification Testing

5 Often times, even for high design assurance level software, as long as the CPU is the same in the test and
target environments, they will be deemed “sufficiently similar” for preforming functional testing.

Page 14

At a high level, figure 9 illustrates how to achieve this goal.6

Specifically, one creates an IOI Registry for testing in the test environment, then
reconfigures the IOI Registry for the target environment:

• In the reference environment, the registry is configured such that:
• P2’s inputs and outputs are defined as expected in the target environment,

from its perspective.
• P2’s inputs are produced by one or more input “simulators” to drive P2’s test

vectors. The simulators can be anything from a simple file of values up to a
sophisticated set of device simulators.

• P2’s outputs are consumed by one or more output monitors so that engineers
can monitor its behavior.

• Formatting functions may be used, if desired.
• In the target environment, the registry is configured such that:

• P2’s inputs and outputs are defined as expected in the target environment,
from its perspective.

• P2’s inputs are consumed from the actual sources of its data.
• P2’s outputs are consumed by the actual users of its data.
• Appropriate formatting functions are employed.

Change Impact and Reconfiguration Costs

The main point illustrated in examples 1, 3 and 4 is the importance of keeping the data’s
characteristics (e.g., engineering units, data type and data rate) separate from the data in
order to maximize reuse. These examples also showcase how IOI enables software
engineers to accomplish this level of abstraction.

The main point illustrated in Examples 2 and 5 is that the application software in P2
remains unchanged in its new target environment, even though it’s I/O is different.

Given that the P2 software is unchanged, it follows that P2’s requirements, design, tests,
test results, reviews and analyses haven’t changed either. Consequently, a great deal of
costly rework can be avoided and that can result in significant cost & schedule savings,
especially in a certified, safety-critical world.7

Of course, IOI isn’t a silver bullet. While P2 hasn’t changed, the IOI Registry has been
modified and DO-178C recognizes that configuration files like the IOI Registry must be

6 In this example, for simplicity, each partition is color-coded to represent the characteristics of the data it
produces and/or consumes.

7 Of course, this statement isn’t universally true. Hardware (and other) changes can be introduced that
would force changes to P2 (e.g., a change in the production rate of airspeed). That said, IOI can be used to
effectively manage many I/O changes, as discussed here.

Page 15

treated much like software, with requirements and verification.8

Further, the test environment is typically sufficient for performing most (or all) functional
testing. However, it will not accurately represent the timing of the target environment.
Consequently, performance and/or time-sensitive testing must be performed in the target
environment.

 The exact nature of how
configuration data is handled can vary program to program. It is up to system designers
and IOI users to incorporate its use in their design and development as well as the
verification processes and procedures.

Finally, even though the application software may be unchanged, some retesting will be
required in the new target environment to verify proper hardware/software and
software/software integration. The amount and type of retesting required will depend on
a number of factors, including the nature of the function being performed and the required
level of design assurance.

Summary

Avionics system I/O is volatile and changes frequently from aircraft to aircraft. From the
perspective of a given avionics software application, the function to be performed in one
aircraft is often the same as in another aircraft and the I/O required is the same, but the I/O
interfaces are different.

Managing this volatility via traditional means (i.e., software changes) can take a great deal
of time and incur significant cost due to changes/rework.

The key benefit from using DDC-I’s IOI is that I/O-related change impact is isolated in the
IOI Registry configuration file, which typically results in simpler changes that can be re-
verified more quickly and less expensively than if software changes are required.9

For Additional Information

©2015 – For details about DDC-I, Inc. or DDC-I product offerings, contact DDC-I at 4600 E. Shea Blvd.,
Suite #102, Phoenix, AZ 85028; phone 602-275-7172, fax 602-252-6054, email sales@ddci.com or visit
http://www.ddci.com.

8 The same has been true under DO-178B since the early/mid 2000’s.

9 As avionics manufacturers begin to use multicore processors in their designs, capabilities like those
provided by DDC-I’s IOI will be invaluable, allowing designers to migrate applications between cores without
software changes.

mailto:sales@ddci.com�
http://www.ddci.com/�

