Reusable DAL-A-verified file system ideal for avionics systems requiring high data storage capacity, low-latency real-time performance and in-flight random read-write access file system
Phoenix, AZ , February 28, 2023. DDC-I, a leading supplier of safety-critical operating systems and tools, today announced an in-flight capable file system for safety-critical avionics applications requiring high-performance random read/write access. Utilizing the popular exFAT file system for data portability on and off the Avionics device, the Deos™ Volume Management System (DVMS) supports single-core and multicore SafeMC™ operation. Additionally, DVMS offers flexible APIs including ARINC-653 Part 2 and POSIX style interfaces, and it is verified to DO-178C Design Assurance Level A (DAL A). The low-latency, XML-configurable file system also features a Media Abstraction Layer (MAL) that decouples media device specifics, supports mixed DAL application access with support for DMA at DAL A, maintains time partitioning, and is available with both power-fail-safe journaling and lossless compression.
“DVMS and the exFAT file system, with DO-178C verification evidence to DAL A, provides effortless mobility for in-flight safety critical data on/off the avionics platform to Windows and Linux based workstations,” said Greg Rose, vice president of marketing and product management at DDC-I. “The Deos RTOS with its SafeMC technology, DVMS with exFAT, and our comprehensive OpenArbor development tools provide a turnkey avionics software development and deployment solution for systems that require high performance multicore operation and data portability.”
DVMS, adaptable through XML configuration files, was developed as a user space DO-178C DAL-A shared library that allows file operations within the time and space partition of the calling application. The DVMS utilizes the exFAT format, a standard file system format for high-capacity memory devices, that enables data to be easily transferred on or off Deos systems through removable media to Linux, Windows and other workstations.
DVMS supports single core, multicore, and multiple concurrent partition access to the file system (re-entrant operation). Each user partition can own one or more DVMS partitions. The DVMS execution time is assigned to the calling application. Each DVMS partition, or volume, may contain one or more files, with DVMS handling mutual exclusion for access to the volumes. The DVMS libraries utilize a Media Abstraction Layer (MAL) that makes it hardware media agnostic. The MALs are available for RAM Disk, a RAW interface, NAND/NOR flash, SATA, and CompactFlash and/or can be modified for customer specific storage media. DMVS is available for Arm, PowerPC and X86 processors.
DVMS features an optional journaling library in which file system data structures (metadata) as well as the file data itself are written to a temporary, but power-cycle-preserved area before committing them to their proper location in the storage device. DVMS also features an optional compression library, a port of the popular zlib lossless data compression library that enables compression/decompression of files on a per volume basis.
About Deos
Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE Conformant Safety Base and Safety Extended Profiles that features hard real-time response, time and space partitioning, and Rate Monotonic, ARINC-653 and POSIX interfaces.
SafeMC technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety critical task response and guaranteed execution time. SafeMC employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system as specified by the Certification Authorities Software Team (CAST).
About DDC-I, Inc.
DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission and safety critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, and Ada application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit https://www.ddci.com/.